metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(2-Amino-5-chlorobenzenesulfonato- κO)bis(3-methylisoquinoline- κN)silver(I)

Qiang Liu, Li Feng, Yu-Jie Li and Xian-Wu Dong*

Jilin Agricultural Science and Technology College, Jilin 132101, People's Republic of China

Correspondence e-mail: jilindxw@yahoo.com.cn

Received 11 February 2010; accepted 11 March 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.019 Å; R factor = 0.056; wR factor = 0.124; data-to-parameter ratio = 13.0.

The title compound, $[Ag(C_6H_5CINO_3S)(C_{10}H_9N)_2]$, crystallizes with two independent molecules in the asymmetric unit. The Ag⁺ cation is three-coordinated by one O atom from the 2-amino-5-chlorobenzenesulfonate anion and two N atoms from two different 3-methylisoquinoline ligands in a slightly distorted trigonal-planar geometry. In the crystal, network of intermolecular N-H···O hydrogen-bonding interactions generates a chain along [100].

Related literature

For related structures, see: Li *et al.* (2007); Mišek *et al.* (2008); Wang *et al.* (2007); Shimizu *et al.* (1999).

Experimental

Crystal data	
$[Ag(C_6H_5CINO_3S)(C_{10}H_9N)_2]$ M _r = 600.68	a = 21.184 (2) Å b = 14.7095 (10) Å
Orthorhombic, $Pca2_1$	c = 15.6602 (10) Å

 $V = 4879.8 (6) \text{ Å}^3$ Z = 8Mo *K*\alpha radiation

Data collection

Bruker SMART APEX CCD
diffractometer
Absorption correction: multiscan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.779, T_{\max} = 0.831$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.056$ $wR(F^2) = 0.124$ S = 0.818349 reflections 641 parameters 16 restraints $\mu = 1.06 \text{ mm}^{-1}$ T = 293 K $0.23 \times 0.19 \times 0.17 \text{ mm}$

13070 measured reflections
8349 independent reflections
3592 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.086$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.85 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.67 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack (1983), 3745 Friedel pairs Flack parameter: -0.06 (4)

Table 1Hydrogen-bond geometry (Å, °).

D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
0.83	2.35	2.844 (12)	118
0.84(3)	2.20(5)	3.006 (13)	159 (11)
0.83 (3)	2.48 (6)	2.973 (14)	119 (4)
0.84	2.30	3.126 (13)	168
	<i>D</i> -H 0.83 0.84 (3) 0.83 (3) 0.84	$\begin{array}{c ccc} D-H & H\cdots A \\ \hline 0.83 & 2.35 \\ 0.84 & (3) & 2.20 & (5) \\ 0.83 & (3) & 2.48 & (6) \\ 0.84 & 2.30 \\ \hline \end{array}$	$\begin{array}{c ccccc} D-H & H\cdots A & D\cdots A \\ \hline 0.83 & 2.35 & 2.844 \ (12) \\ 0.84 \ (3) & 2.20 \ (5) & 3.006 \ (13) \\ 0.83 \ (3) & 2.48 \ (6) & 2.973 \ (14) \\ 0.84 & 2.30 & 3.126 \ (13) \end{array}$

Symmetry code: (i) x, y - 1, z.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

We thank Jilin Agricultural Science and Technology College for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2031).

References

- Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Li, Y.-J., Shangguan, S.-P. & Dong, X.-W. (2007). Acta Cryst. E63, m1806.
- Mišek, J., Teplý, F., Stará, I. G., Tichý, M., Šaman, D., Cisařová, I., Vojtišek, P. & Starý, Y. (2008). Angew. Chem. Int. Ed. 47, 3188–3191.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shimizu, G. K. H., Enright, G. D., Ratcliffe, C. I., Preston, K. F., Reid, J. L. & Ripmeester, J. A. (1999). Chem. Commun. pp. 1485–1486.
- Wang, X.-Y., Ma, C.-H., Gao, Q.-Q., Lu, S.-Q. & Dong, X.-W. (2007). Acta Cryst. E63, m2361.

Acta Cryst. (2010). E66, m415 [doi:10.1107/S1600536810009220]

(2-Amino-5-chlorobenzenesulfonato-KO)bis(3-methylisoquinoline-KN)silver(I)

Q. Liu, L. Feng, Y.-J. Li and X.-W. Dong

Comment

In the crystal structure of the title compound, each Ag^+ cation is three-coordinated by one O atom from the 2-amino-5-chlorobenzenesulfonate anion and two N atoms from two different 3-methylisoquinoline ligands in a slightly distorted trigonal-planar geometry (Fig. 1). The Ag—O distances of 2.645 (7) Å and 2.630 (9) Å, and the Ag—N distances in the range 2.158 (10) - 2.200 (9) Å are similar to whose within the previous reports (Li *et al.*, 2007; Mišek *et al.*, 2008; Shimizu *et al.*, 1999; Wang *et al.*, 2007). A network of intermolecular N—H···O hydrogen bonding interactions generates an one-dimensional chain (Fig 2).

Experimental

An aqueous solution (10 ml) of 2-amino-5-chlorobenzene-1-sulfonic acid (0.041 g, 0.5 mmol) was added to solid Ag_2CO_3 (0.069 g, 0.25 mmol) and stirred for several minutes until no further CO_2 was given off; 3-methylisoquinoline (0.0715 g, 0.5 mmol) in methanol (5 ml) was then added and a white precipitate formed. The precipitate was dissolved by dropwise addition of an aqueous solution of NH₃ (14 M). Crystals of the title compound were obtained by evaporation of the solution for several days at room temperature.

Refinement

The C-bound H atoms were geometrically positioned (C—H 0.93 Å) and refined using a riding model with $U_{iso} = 1.2U_{eq}$ (C). The H atoms of the amino groups were located in Fourier difference maps: the two H atoms bound to N5 were refined with distance restraints (N—H = 0.85 Å) while the other two H atoms (N6) were fully refined (all four H atoms with $U_{iso} = 1.2U_{eq}$ (N)).

Figures

Fig. 1. ORTEP diagram of the title compound, showing 30% probability displacement ellipsoids. H atoms have been omitted for clarity.

Fig. 2. Representation of the one-dimensional chain formed by intermolecular N—H…O hydrogen bonding interactions.

$(2-Amino-5-chlorobenzenesulfonato-\kappa O)$ bis $(3-methylisoquinoline-\kappa N)$ silver(I)

 $D_{\rm x} = 1.635 {\rm Mg m}^{-3}$

 $\theta = 1.5 - 25.3^{\circ}$

 $\mu = 1.06 \text{ mm}^{-1}$ T = 293 K

Block, colorless

 $0.23\times0.19\times0.17~mm$

Melting point: not measured K

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 8349 reflections

Crystal data

 $[Ag(C_{6}H_{5}CINO_{3}S)(C_{10}H_{9}N)_{2}]$ $M_{r} = 600.68$ Orthorhombic, $Pca2_{1}$ Hall symbol: P 2c -2ac a = 21.184 (2) Å b = 14.7095 (10) Å c = 15.6602 (10) Å V = 4879.8 (6) Å³ Z = 8F(000) = 2432

Data collection

Bruker SMART APEX CCD diffractometer	8349 independent reflections
Radiation source: fine-focus sealed tube	3592 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.086$
phi and ω scans	$\theta_{\text{max}} = 25.3^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -25 \rightarrow 6$
$T_{\min} = 0.779, T_{\max} = 0.831$	$k = -16 \rightarrow 17$
13070 measured reflections	$l = -18 \rightarrow 18$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.056$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.124$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.029P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 0.81	$(\Delta/\sigma)_{\rm max} = 0.001$
8349 reflections	$\Delta \rho_{max} = 0.85 \text{ e } \text{\AA}^{-3}$
641 parameters	$\Delta \rho_{\rm min} = -0.67 \ e \ {\rm \AA}^{-3}$
16 restraints	Absolute structure: Flack (1983), 3745 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: -0.06 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{iso}*/U_{eq}$ \boldsymbol{Z} х y Ag1 0.0513(2)0.25032 (4) 0.63381 (6) 0.06884(7)Ag2 0.27564 (4) 0.13421 (6) 0.07551 (6) 0.0542 (3) C1 0.2390 (5) 0.038 (3) 0.5454(7) 0.2400(7) H10.046* 0.1969 0.5554 0.2260 C2 0.2542(7) 0.5093 (6) 0.3221 (10) 0.035(3)C3 0.3795 (8) 0.2067 (6) 0.4903 (8) 0.053(4)H3 0.1644 0.4977 0.063* 0.3653 C4 0.2251 (7) 0.4594 (8) 0.055 (4) 0.4600 (8) H4 0.1940 0.4451 0.4997 0.066* C5 0.2896(7) 0.4489 (8) 0.4835 (8) 0.057 (4) 0.3004 0.4291 Н5 0.5380 0.068* C6 0.3338(5)0.4678 (9) 0.4269 (8) 0.051 (4) H6 0.3759 0.4595 0.4418 0.061* C7 0.3409 (8) 0.3186 (6) 0.5015 (8) 0.038 (3) C8 0.3643 (5) 0.5205 (7) 0.2793 (7) 0.036(3) H8 0.4070 0.5137 0.2918 0.044* C9 0.3454 (6) 0.5496 (8) 0.1992 (7) 0.044 (3) C10 0.3918 (5) 0.5668 (8) 0.1310(7) 0.057 (4) H10A 0.3783 0.6177 0.0972 0.085* H10B 0.3953 0.5140 0.0953 0.085* H10C 0.4322 0.5800 0.1560 0.085* -0.0731 (9) C11 0.1698 (6) 0.7127 (8) 0.051 (4) H11 0.1386 0.6934 -0.03550.062* C12 0.7482 (9) 0.1514 (8) -0.1540(11)0.064(4)C13 0.0880(7) 0.7547 (9) -0.1746 (10) 0.078 (5) H13 0.0573 0.7382 -0.13500.094* C14 0.0710(10) 0.7853 (13) -0.2528(14)0.121 (8) H14 0.0288 0.7917 0.146* -0.2680C15 0.1197 (12) 0.8071 (14) -0.3100(14)0.125 (10) H15 0.1088 0.8282 -0.36400.150* C16 0.1783 (10) 0.7993 (11) -0.2917 (10) 0.098 (7) H16 0.118* 0.2085 0.8139 -0.3326C17 0.2604 (9) 0.7612 (8) -0.1847(11)0.067 (5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H17	0.2922	0.7762	-0.2232	0.080*
C18	0.2776 (6)	0.7318 (8)	-0.1035 (9)	0.045 (3)
C19	0.3416 (6)	0.7216 (9)	-0.0721 (10)	0.066 (4)
H19A	0.3441	0.7441	-0.0147	0.099*
H19B	0.3700	0.7554	-0.1079	0.099*
H19C	0.3531	0.6584	-0.0730	0.099*
C20	0.1977 (10)	0.7693 (10)	-0.2111 (11)	0.076 (6)
C21	0.0488 (5)	0.0799 (7)	0.0542 (7)	0.035 (3)
C22	0.0473 (5)	-0.0178 (8)	0.0625 (10)	0.047 (3)
C23	0.0203 (6)	-0.0640 (8)	-0.0051 (8)	0.049 (3)
H95	0.0194	-0.1272	-0.0027	0.058*
C24	-0.0052 (5)	-0.0228 (9)	-0.0756 (8)	0.045 (3)
H94	-0.0241	-0.0574	-0.1183	0.054*
C25	-0.0027 (5)	0.0701 (9)	-0.0824 (7)	0.042 (3)
C26	0.0234 (5)	0.1205 (8)	-0.0160 (7)	0.037 (3)
H92	0.0235	0.1836	-0.0197	0.045*
C27	0.0584 (5)	0.4823 (8)	0.2184 (7)	0.036 (3)
C28	0.0441 (5)	0.4330 (8)	0.2919 (8)	0.048 (3)
H99	0.0462	0.3699	0.2897	0.058*
C29	0.0268 (5)	0.4738 (8)	0.3682 (8)	0.049 (3)
H100	0.0189	0.4390	0.4166	0.059*
C30	0.0215 (5)	0.5683 (9)	0.3705 (7)	0.044 (3)
C31	0.0314 (4)	0.6194 (7)	0.2970 (6)	0.036 (3)
H102	0.0250	0.6819	0.2982	0.043*
C32	0.0508 (5)	0.5780 (8)	0.2217 (7)	0.038 (3)
C33	0.2104 (6)	0.2154 (8)	-0.0753 (7)	0.042 (3)
Н59	0.1767	0.2015	-0.0395	0.051*
C34	0.1972 (7)	0.2484 (10)	-0.1602 (8)	0.045 (4)
C35	0.1361 (6)	0.2610 (9)	-0.1908 (9)	0.059 (4)
H57	0.1019	0.2500	-0.1552	0.071*
C36	0.1260 (6)	0.2896 (9)	-0.2737 (9)	0.061 (4)
H56	0.0854	0.2932	-0.2961	0.073*
C37	0.1779 (7)	0.3126 (9)	-0.3222 (9)	0.064 (4)
H55	0.1706	0.3358	-0.3765	0.077*
C38	0.2379 (7)	0.3039 (8)	-0.2968 (8)	0.058 (4)
H54	0.2708	0.3183	-0.3337	0.070*
C39	0.2513 (7)	0.2718 (7)	-0.2111 (8)	0.049 (4)
C40	0.3113 (7)	0.2583 (9)	-0.1766 (10)	0.057 (5)
H52	0.3465	0.2710	-0.2100	0.069*
C41	0.3200 (6)	0.2276 (8)	-0.0966 (9)	0.045 (3)
C42	0.3828 (5)	0.2179 (9)	-0.0562 (8)	0.062 (4)
H51A	0.3868	0.1581	-0.0324	0.093*
H51B	0.3872	0.2623	-0.0117	0.093*
H51C	0.4151	0.2272	-0.0984	0.093*
C43	0.2361 (5)	0.0437 (8)	0.2403 (7)	0.048 (3)
H69	0.1969	0.0537	0.2152	0.058*
C44	0.2402 (7)	0.0130 (8)	0.3236 (10)	0.044 (3)
C45	0.1819 (6)	-0.0041 (8)	0.3705 (9)	0.049 (4)
H67	0.1431	0.0067	0.3447	0.059*

C46	0.1844 (6)	-0.0367 (9)	0.4541 (9)	0.062 (4)
H66	0.1478	-0.0471	0.4855	0.074*
C47	0.2445 (7)	-0.0533 (8)	0.4889 (9)	0.059 (4)
H65	0.2457	-0.0744	0.5448	0.070*
C48	0.3016 (6)	-0.0415 (8)	0.4490 (8)	0.053 (4)
H64	0.3399	-0.0537	0.4758	0.064*
C49	0.2977 (7)	-0.0083 (8)	0.3613 (8)	0.043 (3)
C50	0.3515 (6)	0.0072 (8)	0.3101 (9)	0.051 (4)
H62	0.3910	-0.0050	0.3334	0.061*
C51	0.3488 (6)	0.0382 (8)	0.2304 (9)	0.047 (3)
C52	0.4045 (5)	0.0548 (9)	0.1719 (7)	0.059 (4)
H61A	0.3990	0.1117	0.1427	0.089*
H61B	0.4073	0.0065	0.1308	0.089*
H61C	0.4426	0.0567	0.2050	0.089*
Cl1	-0.00209 (15)	0.6221 (2)	0.46319 (18)	0.0590 (9)
Cl2	-0.03193 (15)	0.1251 (2)	-0.17157 (18)	0.0583 (9)
N1	0.2844 (4)	0.5654 (7)	0.1817 (6)	0.045 (3)
N2	0.2299 (5)	0.7059 (6)	-0.0490 (6)	0.042 (3)
N3	0.2901 (5)	0.0590 (6)	0.1954 (6)	0.041 (3)
N4	0.2680 (5)	0.2041 (6)	-0.0464 (6)	0.043 (3)
N5	0.0812 (6)	0.4377 (7)	0.1469 (6)	0.057 (3)
N6	0.0779 (5)	-0.0619 (6)	0.1284 (6)	0.057 (3)
H6NA	0.0606	-0.0434	0.1730	0.068*
H6NB	0.0662	-0.1163	0.1266	0.068*
O4	0.0392 (5)	0.7346 (6)	0.1514 (5)	0.079 (3)
O5	0.0383 (5)	0.6065 (6)	0.0599 (7)	0.110 (4)
O6	0.1352 (4)	0.6556 (8)	0.1279 (6)	0.099 (4)
O7	0.1532 (3)	0.1489 (6)	0.1049 (4)	0.057 (2)
O8	0.0777 (4)	0.1081 (5)	0.2150 (4)	0.056 (2)
O9	0.0590 (4)	0.2375 (5)	0.1233 (5)	0.053 (2)
S1	0.08796 (14)	0.1491 (2)	0.13082 (18)	0.0396 (8)
S3	0.06739 (16)	0.6494 (2)	0.1324 (2)	0.0478 (9)
H5NA	0.085 (6)	0.381 (2)	0.144 (5)	0.072*
H5NB	0.088 (5)	0.460 (3)	0.099 (2)	0.072*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Ag1	0.0592 (5)	0.0565 (5)	0.0382 (5)	0.0081 (5)	-0.0039 (7)	0.0097 (7)
Ag2	0.0612 (6)	0.0570 (6)	0.0445 (6)	0.0045 (5)	0.0007 (8)	0.0118 (8)
C1	0.044 (9)	0.028 (7)	0.042 (8)	0.004 (6)	-0.009 (6)	-0.014 (6)
C2	0.035 (7)	0.027 (6)	0.042 (7)	-0.005 (8)	0.002 (6)	0.006 (8)
C3	0.048 (9)	0.049 (10)	0.061 (10)	0.005 (7)	0.002 (8)	-0.008 (8)
C4	0.092 (9)	0.046 (9)	0.027 (7)	-0.025 (8)	0.005 (7)	-0.003 (7)
C5	0.087 (9)	0.043 (9)	0.041 (8)	0.007 (8)	0.000 (8)	-0.008 (7)
C6	0.035 (8)	0.058 (10)	0.059 (9)	0.004 (6)	-0.007 (7)	0.013 (8)
C7	0.044 (9)	0.033 (8)	0.036 (8)	0.008 (6)	-0.007 (6)	-0.007 (6)
C8	0.023 (7)	0.044 (8)	0.042 (8)	-0.002 (6)	-0.008 (6)	-0.009(7)

C9	0.045 (9)	0.058 (9)	0.028 (7)	0.010 (7)	-0.007 (6)	-0.003 (7)
C10	0.055 (9)	0.071 (10)	0.044 (8)	0.015 (7)	0.006 (7)	0.011 (7)
C11	0.041 (9)	0.048 (9)	0.065 (10)	0.009 (7)	0.009 (7)	-0.007 (8)
C12	0.087 (13)	0.042 (10)	0.063 (11)	0.021 (9)	-0.038 (10)	-0.010 (9)
C13	0.094 (12)	0.049 (9)	0.091 (13)	0.001 (8)	-0.059 (10)	0.007 (9)
C14	0.17 (2)	0.071 (14)	0.122 (19)	0.045 (15)	-0.084 (15)	-0.009 (14)
C15	0.23 (3)	0.059 (13)	0.090 (16)	0.029 (18)	-0.077 (18)	0.014 (13)
C16	0.20 (2)	0.054 (11)	0.040 (11)	0.029 (13)	-0.033 (12)	0.002 (9)
C17	0.109 (16)	0.037 (8)	0.054 (11)	-0.003 (10)	0.045 (11)	0.001 (10)
C18	0.057 (10)	0.020 (8)	0.059 (10)	0.004 (7)	0.009 (8)	-0.007 (7)
C19	0.056 (10)	0.054 (10)	0.087 (12)	-0.008 (8)	0.006 (8)	0.009 (9)
C20	0.141 (19)	0.036 (10)	0.052 (13)	0.018 (11)	0.001 (13)	0.001 (9)
C21	0.046 (7)	0.035 (7)	0.024 (7)	-0.007 (5)	-0.005 (5)	-0.001 (6)
C22	0.054 (7)	0.039 (7)	0.050 (8)	-0.007 (5)	0.014 (8)	0.005 (8)
C23	0.070 (10)	0.017 (7)	0.059 (9)	-0.018 (7)	0.021 (8)	-0.004 (7)
C24	0.049 (8)	0.051 (10)	0.034 (7)	-0.014 (7)	0.006 (6)	-0.009 (7)
C25	0.031 (7)	0.051 (9)	0.044 (8)	-0.006 (6)	0.004 (6)	-0.006 (7)
C26	0.043 (7)	0.030 (7)	0.038 (7)	0.001 (6)	0.001 (6)	0.006 (7)
C27	0.032 (7)	0.047 (8)	0.028 (7)	0.002 (6)	-0.004 (5)	-0.001 (7)
C28	0.051 (8)	0.041 (8)	0.053 (9)	-0.003 (6)	-0.007 (6)	0.012 (7)
C29	0.064 (9)	0.040 (9)	0.044 (9)	-0.003 (7)	0.006 (7)	0.009 (7)
C30	0.046 (8)	0.055 (10)	0.031 (7)	0.002 (7)	-0.001 (6)	0.003 (6)
C31	0.035 (6)	0.030 (7)	0.042 (7)	-0.005 (5)	0.000 (5)	-0.009 (6)
C32	0.043 (8)	0.048 (9)	0.024 (7)	-0.003 (6)	-0.003 (5)	-0.009 (6)
C33	0.046 (9)	0.042 (8)	0.039 (8)	0.009 (6)	0.001 (6)	-0.001 (7)
C34	0.065 (11)	0.047 (9)	0.023 (8)	0.001 (8)	0.008 (7)	-0.008 (7)
C35	0.060 (10)	0.061 (10)	0.055 (10)	0.011 (8)	-0.004 (8)	0.012 (8)
C36	0.071 (11)	0.052 (10)	0.060 (10)	0.010 (8)	-0.012 (8)	-0.004 (9)
C37	0.102 (11)	0.037 (9)	0.053 (10)	0.008 (9)	-0.001 (9)	0.009 (8)
C38	0.097 (10)	0.036 (8)	0.042 (9)	-0.010 (8)	0.020 (8)	0.000 (7)
C39	0.090 (10)	0.023 (7)	0.035 (9)	0.003 (8)	0.019 (8)	-0.005 (6)
C40	0.054 (11)	0.043 (10)	0.075 (12)	-0.007 (8)	0.028 (9)	0.005 (9)
C41	0.043 (8)	0.028 (8)	0.063 (10)	-0.008 (6)	0.007 (7)	0.006 (7)
C42	0.064 (8)	0.076 (10)	0.047 (9)	-0.012 (8)	0.003 (7)	0.016 (8)
C43	0.047 (9)	0.063 (10)	0.034 (7)	0.005 (7)	-0.011 (6)	0.014 (7)
C44	0.053 (10)	0.038 (7)	0.042 (7)	-0.006 (7)	-0.006 (7)	0.003 (8)
C45	0.035 (9)	0.049 (10)	0.063 (10)	-0.008 (7)	-0.004 (7)	0.009 (8)
C46	0.060 (8)	0.058 (10)	0.067 (11)	-0.003 (8)	0.009 (7)	0.006 (9)
C47	0.091 (8)	0.035 (8)	0.050 (9)	-0.012 (8)	-0.007 (7)	0.011 (7)
C48	0.052 (7)	0.048 (9)	0.060 (10)	0.009 (7)	-0.021 (6)	0.008 (8)
C49	0.056 (9)	0.030 (8)	0.043 (9)	-0.006 (7)	-0.004 (7)	-0.002 (7)
C50	0.041 (9)	0.048 (9)	0.063 (10)	-0.003 (6)	-0.028 (8)	0.013 (8)
C51	0.037 (8)	0.042 (9)	0.062 (10)	0.014 (7)	-0.014 (7)	-0.011 (8)
C52	0.046 (8)	0.063 (10)	0.069 (10)	0.003 (7)	0.015 (7)	0.000 (8)
Cl1	0.069 (2)	0.071 (2)	0.0379 (17)	-0.0122 (19)	0.0097 (15)	-0.0056 (19)
Cl2	0.072 (2)	0.061 (2)	0.0418 (18)	0.0038 (19)	-0.0142 (15)	0.003 (2)
N1	0.039 (6)	0.064 (8)	0.030 (6)	0.010 (6)	0.003 (5)	0.001 (6)
N2	0.049 (7)	0.038 (6)	0.038 (6)	0.009 (5)	0.006 (5)	0.003 (5)
N3	0.050 (7)	0.035 (6)	0.039 (6)	-0.001 (5)	-0.004 (5)	0.008 (5)

N4	0.051 (7)	0.043 (7)	0.035 (6)	-0.001 (5)	0.005 (5)	0.007 (5)
N5	0.077 (8)	0.048 (8)	0.046 (7)	0.003 (7)	0.007 (6)	-0.004 (6)
N6	0.091 (9)	0.029 (7)	0.049 (7)	0.001 (6)	0.003 (6)	0.020 (5)
O4	0.122 (9)	0.057 (7)	0.057 (7)	0.016 (6)	0.022 (6)	0.023 (5)
05	0.203 (11)	0.082 (7)	0.045 (6)	-0.020(7)	-0.047 (8)	0.022 (6)
O6	0.061 (7)	0.154 (11)	0.083 (7)	0.017 (7)	0.022 (5)	0.055 (7)
07	0.037 (4)	0.086 (6)	0.046 (5)	-0.010 (4)	0.002 (3)	0.006 (5)
08	0.077 (6)	0.067 (6)	0.024 (5)	0.002 (5)	0.008 (4)	-0.006 (4)
09	0.068 (6)	0.038 (5)	0.052 (6)	0.008 (4)	-0.011 (4)	-0.007 (5)
S1	0.0413 (19)	0.040 (2)	0.0370 (18)	0.0015 (16)	-0.0016 (14)	0.0003 (17)
S3	0.061 (2)	0.046 (2)	0.037 (2)	0.0097 (18)	0.0075 (17)	0.0083 (18)

Geometric parameters (Å, °)

Ag1—N1	2.158 (10)	C27—C32	1.418 (14)
Ag1—N2	2.172 (9)	C28—C29	1.385 (15)
Ag1—06	2.628 (9)	С28—Н99	0.9300
Ag2—N4	2.175 (9)	C29—C30	1.395 (15)
Ag2—N3	2.200 (9)	С29—Н100	0.9300
Ag2—07	2.644 (7)	C30—C31	1.391 (14)
C1—N1	1.357 (13)	C30—Cl1	1.727 (12)
C1—C2	1.428 (17)	C31—C32	1.389 (13)
C1—H1	0.9300	C31—H102	0.9300
C2—C3	1.379 (18)	C32—S3	1.784 (12)
C2—C7	1.399 (17)	C33—N4	1.312 (13)
C3—C4	1.395 (16)	C33—C34	1.443 (16)
С3—Н3	0.9300	С33—Н59	0.9300
C4—C5	1.423 (16)	C34—C35	1.392 (16)
C4—H4	0.9300	C34—C39	1.438 (18)
C5—C6	1.320 (15)	C35—C36	1.381 (17)
С5—Н5	0.9300	С35—Н57	0.9300
C6—C7	1.471 (16)	C36—C37	1.377 (17)
С6—Н6	0.9300	С36—Н56	0.9300
C7—C8	1.396 (15)	C37—C38	1.339 (16)
C8—C9	1.385 (14)	С37—Н55	0.9300
С8—Н8	0.9300	C38—C39	1.449 (16)
C9—N1	1.341 (13)	С38—Н54	0.9300
C9—C10	1.474 (14)	C39—C40	1.397 (18)
C10—H10A	0.9600	C40—C41	1.344 (17)
C10—H10B	0.9600	C40—H52	0.9300
C10—H10C	0.9600	C41—N4	1.396 (14)
C11—N2	1.331 (13)	C41—C42	1.480 (15)
C11—C12	1.426 (18)	C42—H51A	0.9600
C11—H11	0.9300	C42—H51B	0.9600
C12—C20	1.36 (2)	C42—H51C	0.9600
C12—C13	1.385 (17)	C43—N3	1.361 (13)
C13—C14	1.35 (2)	C43—C44	1.383 (17)
С13—Н13	0.9300	С43—Н69	0.9300
C14—C15	1.40 (3)	C44—C49	1.390 (19)

C14—H14	0.9300	C44—C45	1.459 (17)
C15—C16	1.28 (2)	C45—C46	1.395 (16)
C15—H15	0.9300	С45—Н67	0.9300
C16—C20	1.40 (2)	C46—C47	1.407 (17)
C16—H16	0.9300	C46—H66	0.9300
C17—C18	1.392 (19)	C47—C48	1.372 (16)
C17—C20	1.40 (2)	С47—Н65	0.9300
C17—H17	0.9300	C48—C49	1.460 (17)
C18—N2	1.377 (14)	C48—H64	0.9300
C18—C19	1.450 (16)	C49—C50	1.412 (16)
C19—H19A	0.9600	C50—C51	1.330 (16)
C19—H19B	0.9600	С50—Н62	0.9300
C19—H19C	0.9600	C51—N3	1.394 (13)
C21—C26	1.363 (14)	C51—C52	1.514 (15)
C21—C22	1.443 (14)	С52—Н61А	0.9600
C21—S1	1.779 (10)	С52—Н61В	0.9600
C22—N6	1.381 (15)	С52—Н61С	0.9600
C22—C23	1.383 (16)	N5—H5NA	0.84 (3)
C23—C24	1.371 (15)	N5—H5NB	0.83 (3)
С23—Н95	0.9300	N6—H6NA	0.8343
C24—C25	1.372 (15)	N6—H6NB	0.8395
C24—H94	0.9300	O4—S3	1.419 (9)
C25—C26	1.391 (14)	O5—S3	1.437 (10)
C25—Cl2	1.729 (12)	O6—S3	1.441 (9)
С26—Н92	0.9300	O7—S1	1.440 (7)
C27—N5	1.384 (13)	O8—S1	1.466 (8)
C27—C28	1.394 (14)	O9—S1	1.442 (8)
N1—Ag1—N2	172.0 (4)	C32—C31—H102	119.6
N1—Ag1—O6	94.5 (3)	C30-C31-H102	119.6
N2—Ag1—O6	93.1 (3)	C31—C32—C27	120.0 (11)
N4—Ag2—N3	175.7 (4)	C31—C32—S3	117.8 (9)
N4—Ag2—O7	92.4 (3)	C27—C32—S3	122.2 (9)
N3—Ag2—O7	91.6 (3)	N4—C33—C34	122.7 (12)
N1—C1—C2	121.8 (11)	N4—C33—H59	118.7
N1—C1—H1	119.1	С34—С33—Н59	118.7
C2—C1—H1	119.1	C35—C34—C39	121.1 (14)
C3—C2—C7	123.9 (13)	C35—C34—C33	122.9 (13)
C3—C2—C1	119.9 (13)	C39—C34—C33	116.0 (13)
C7—C2—C1	116.1 (12)	C36—C35—C34	120.6 (14)
C2—C3—C4	116.8 (13)	С36—С35—Н57	119.7
С2—С3—Н3	121.6	С34—С35—Н57	119.7
С4—С3—Н3	121.6	C37—C36—C35	118.0 (13)
C3—C4—C5	122.5 (12)	С37—С36—Н56	121.0
C3—C4—H4	118.8	C35—C36—H56	121.0
C5—C4—H4	118.8	C38—C37—C36	124.7 (14)
C6—C5—C4	119.0 (13)	С38—С37—Н55	117.6
С6—С5—Н5	120.5	С36—С37—Н55	117.6
C4—C5—H5	120.5	C37—C38—C39	119.5 (13)
C5—C6—C7	122.0 (12)	С37—С38—Н54	120.3

С5—С6—Н6	119.0	С39—С38—Н54	120.3
С7—С6—Н6	119.0	C40—C39—C34	118.5 (13)
C8—C7—C2	121.0 (12)	C40—C39—C38	125.6 (13)
C8—C7—C6	123.2 (11)	C34—C39—C38	115.8 (14)
C2—C7—C6	115.7 (12)	C41—C40—C39	122.2 (13)
C9—C8—C7	119.1 (11)	С41—С40—Н52	118.9
С9—С8—Н8	120.4	С39—С40—Н52	118.9
С7—С8—Н8	120.4	C40-C41-N4	120.0 (12)
N1—C9—C8	121.2 (11)	C40—C41—C42	123.6 (13)
N1	117.7 (10)	N4—C41—C42	116.4 (12)
C8—C9—C10	121.1 (11)	C41—C42—H51A	109.5
C9—C10—H10A	109.5	C41—C42—H51B	109.5
C9—C10—H10B	109.5	H51A—C42—H51B	109.5
H10A—C10—H10B	109.5	C41—C42—H51C	109.5
C9—C10—H10C	109.5	H51A—C42—H51C	109.5
H10A—C10—H10C	109.5	H51B—C42—H51C	109.5
H10B-C10-H10C	109.5	N3—C43—C44	119.3 (11)
N2—C11—C12	122.7 (13)	N3—C43—H69	120.4
N2—C11—H11	118.6	С44—С43—Н69	120.4
C12—C11—H11	118.6	C43—C44—C49	122.0 (13)
C20-C12-C13	122.0 (17)	C43—C44—C45	118.6 (13)
C20-C12-C11	118.0 (15)	C49—C44—C45	119.2 (13)
C13—C12—C11	119.8 (17)	C46—C45—C44	120.1 (12)
C14—C13—C12	119.4 (19)	С46—С45—Н67	120.0
C14—C13—H13	120.3	С44—С45—Н67	120.0
C12—C13—H13	120.3	C45—C46—C47	117.1 (13)
C13—C14—C15	117 (2)	С45—С46—Н66	121.4
C13—C14—H14	121.4	C47—C46—H66	121.4
C15-C14-H14	121.4	C48—C47—C46	126.9 (13)
C16—C15—C14	123 (2)	C48—C47—H65	116.6
C16—C15—H15	118.3	С46—С47—Н65	116.6
C14—C15—H15	118.3	C47—C48—C49	114.9 (11)
C15-C16-C20	121 (2)	С47—С48—Н64	122.6
C15—C16—H16	119.5	C49—C48—H64	122.6
C20-C16-H16	119.5	C44—C49—C50	115.5 (12)
C18—C17—C20	123.1 (14)	C44—C49—C48	121.7 (13)
С18—С17—Н17	118.5	C50—C49—C48	122.8 (13)
С20—С17—Н17	118.5	C51—C50—C49	123.6 (13)
N2-C18-C17	117.4 (12)	С51—С50—Н62	118.2
N2-C18-C19	116.6 (12)	С49—С50—Н62	118.2
C17—C18—C19	125.9 (14)	C50-C51-N3	118.9 (12)
C18—C19—H19A	109.5	C50—C51—C52	126.1 (12)
С18—С19—Н19В	109.5	N3—C51—C52	115.0 (12)
H19A—C19—H19B	109.5	С51—С52—Н61А	109.5
C18—C19—H19C	109.5	С51—С52—Н61В	109.5
H19A—C19—H19C	109.5	H61A—C52—H61B	109.5
H19B—C19—H19C	109.5	С51—С52—Н61С	109.5
C12—C20—C17	118.1 (16)	H61A—C52—H61C	109.5
C12—C20—C16	117 (2)	H61B—C52—H61C	109.5

C17—C20—C16	125 (2)	C9—N1—C1	120.5 (10)
C26—C21—C22	120.0 (11)	C9—N1—Ag1	124.8 (8)
C26—C21—S1	118.5 (8)	C1—N1—Ag1	114.5 (8)
C22—C21—S1	121.3 (10)	C11—N2—C18	120.4 (11)
N6-C22-C23	122.4 (11)	C11—N2—Ag1	117.9 (9)
N6-C22-C21	121.6 (12)	C18—N2—Ag1	121.0 (8)
C23—C22—C21	115.4 (12)	C43—N3—C51	120.6 (10)
C24—C23—C22	124.3 (11)	C43—N3—Ag2	114.1 (7)
С24—С23—Н95	117.9	C51—N3—Ag2	124.8 (9)
С22—С23—Н95	117.9	C33—N4—C41	120.6 (11)
C23—C24—C25	119.1 (11)	C33—N4—Ag2	115.5 (8)
С23—С24—Н94	120.4	C41—N4—Ag2	123.5 (9)
С25—С24—Н94	120.4	C27—N5—H5NA	124 (5)
C24—C25—C26	119.3 (11)	C27—N5—H5NB	127 (3)
C24—C25—Cl2	121.0 (10)	H5NA—N5—H5NB	109 (4)
C26—C25—Cl2	119.8 (9)	C22—N6—H6NA	105.4
C21—C26—C25	121.8 (11)	C22—N6—H6NB	106.5
С21—С26—Н92	119.1	H6NA—N6—H6NB	102.0
С25—С26—Н92	119.1	S3—O6—Ag1	159.1 (7)
N5-C27-C28	119.9 (11)	S1—O7—Ag2	172.3 (5)
N5-C27-C32	122.6 (11)	O7—S1—O9	112.8 (5)
C28—C27—C32	117.4 (11)	O7—S1—O8	113.3 (5)
C29—C28—C27	123.0 (11)	O9—S1—O8	112.4 (5)
С29—С28—Н99	118.5	O7—S1—C21	104.9 (5)
С27—С28—Н99	118.5	O9—S1—C21	105.2 (5)
C28—C29—C30	118.4 (11)	O8—S1—C21	107.5 (5)
C28—C29—H100	120.8	O4—S3—O5	111.9 (6)
С30—С29—Н100	120.8	O4—S3—O6	111.9 (7)
C31—C30—C29	120.3 (11)	O5—S3—O6	114.7 (7)
C31—C30—C11	119.5 (9)	O4—S3—C32	105.8 (5)
C29—C30—C11	120.1 (9)	O5—S3—C32	106.0 (5)
C32—C31—C30	120.7 (10)	O6—S3—C32	105.7 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!\!\cdot\!\!\cdot\!\!\cdot\!\!A$
N6—H6NA···O8	0.83	2.35	2.844 (12)	118
N5—H5NA…O9	0.84 (3)	2.20 (5)	3.006 (13)	159 (11)
N5—H5NB···O5	0.83 (3)	2.48 (6)	2.973 (14)	119 (4)
N6—H6NB…O4 ⁱ	0.84	2.30	3.126 (13)	168
Symmetry codes: (i) $x, y=1, z$.				

